skip to main content


Search for: All records

Creators/Authors contains: "Briggs, Andrew F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a transient response study of a semiconductor based plasmonic switch. The proposed device operates through active control and modulation of localized electron density waves, i.e., surface plasmon polaritons (SPPs) at degenerately doped In0.53Ga0.47As based PN++junctions. A set of devices is designed and fabricated, and its optical and electronic behaviors are studied both experimentally and theoretically. Optical characterization shows far-field reflectivity modulation, a result of electrical tuning of the SPPs at the PN++junctions for mid-IR wavelengths, with significant 3 dB bandwidths. Numerical studies using a self-consistent electro-optic multi-physics model are performed to uncover the temporal response of the devices’ electromagnetic and kinetic mechanisms facilitating the SPP switching at the PN++junctions. Numerical simulations show strong synergy with the experimental results, validating the claim of potential optoelectronic switching with a 3 dB bandwidth as high as 2 GHz. Thus, this study confirms that the presented SPP diode architecture can be implemented for high-speed control of SPPs through electrical means, providing a pathway toward fast all-semiconductor plasmonic devices.

     
    more » « less
  2. We report the theoretical prediction and experimental realization of the optical phenomenon of “ballistic resonance.” This resonance, resulting from the interplay between free charge motion in confining geometries and periodic driving electromagnetic fields, can be utilized to achieve negative permittivity at frequencies well above the bulk plasma frequency. As a proof of principle, we demonstrate all-semiconductor hyperbolic metamaterials operating at frequencies 60% above the plasma frequency of the constituent doped semiconductor “metallic” layer. Ballistic resonance will therefore enable the realization and deployment of various applications that rely on local field enhancement and emission modulation, typically associated with plasmonic materials, in new materials platforms.

     
    more » « less
  3. Remarkable systems have been reported recently using the polylithic integration of semiconductor optoelectronic devices and plasmonic materials exhibiting epsilon-near-zero (ENZ) and negative permittivity. In traditional noble metals, the ENZ and plasmonic response is achieved near the metal plasma frequency, limiting plasmonic optoelectronic device design flexibility. Here, we leverage an all-epitaxial approach to monolithically and seamlessly integrate designer plasmonic materials into a quantum dot light emitting diode, leading to a5.6×<#comment/>enhancement over an otherwise identical non-plasmonic control sample. The device presented exhibits optical powers comparable, and temperature performance far superior, to commercially available devices.

     
    more » « less